Author/Authors :
Jifeng Pang، نويسنده , , Jinping Li، نويسنده ,
Abstract :
Low thermal expansion porous SiC–WC composite ceramics were prepared by solid state reaction of Si and WC at 1560 °C, with NH4HCO3 as a pore generating agent. Phase composition, thermal expansion, flexural strength, and microstructure of the carbide ceramics were examined. Presence of the SiC, WC and WC1−X phases were detected in the carbide ceramics. As Si content increased from 2 to 14 wt%, the coefficient of thermal expansion first decreased and then increased, with a minimum of 4.11 × 10−6 °C at 8 wt% Si, whereas the flexural strength decreased gradually, from 143.9 to 82.7 MPa. Pores of SiC–WC ceramics were less than 2 μm in diameter, because of the stacking interstice of carbide particles and volatilization of silicon. However in the presence of NH4HCO3, pores of SiC–WC ceramics were bimodally distributed, the stacking interstice of carbide particles loosened from 1 to 4 μm and pores larger than 5 μm were also formed.
Keywords :
A. Sintering , B. Porosity , C. Coefficient of thermal expansion , D. Carbide