Title of article :
A generalized Ross method for two- and three-dimensional variably saturated flow
Author/Authors :
Yuanyuan Zhaa، نويسنده , , Liangsheng Shia، نويسنده , , Ming Yeb، نويسنده , , Jinzhong Yanga، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A numerical method has been proposed by Ross [Ross PJ. Modeling soil water and solute transport-fast, simplified numerical solutions. Agron J 2003; 95(6): 1352–1361.] to solve one-dimensional soil water movement problems. The Ross method is a noniterative numerical scheme, that can reduce computational time without sacrificing computational accuracy. The main aim of this study is to present a general form of the Ross method for two- and three-dimensional variably saturated flow. The established numerical model (R3D) is widely tested using five problems, in which the numerical solutions of R3D are compared with analytical solutions, laboratory data, and solutions from a traditional iterative numerical model. The comparison shows that R3D accommodates various hydraulic functions and boundary conditions. Results from R3D, which does not require iteration, are as accurate as results from iterative model. With the help of the primary variable switching technique, this model is unconditionally mass conservative, and computes infiltration into dry soil more efficiently. R3D is thus considered as an efficient tool for its high accuracy and efficiency for solving two- and three-dimensional variably saturated flow problems.
Keywords :
Richards’ equation , Ross method , Unsaturated flow , Noniterative method
Journal title :
Advances in Water Resources
Journal title :
Advances in Water Resources