Title of article :
Bi-component MnO/ZnO hollow microspheres embedded in reduced graphene oxide as electrode materials for enhanced lithium storage
Author/Authors :
F. Jiang، نويسنده , , L.W. Yang، نويسنده , , Y. Tian، نويسنده , , P. Yang، نويسنده , , S.W. Hu، نويسنده , , K. Huang، نويسنده , , X.L. Wei، نويسنده , , J.X. Zhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
8
From page :
4297
To page :
4304
Abstract :
Novel composite of bi-component MnO/ZnO (denoted as MZO) hollow microspheres embedded in reduced graphene oxide (RGO) as a high performance electrode material for Lithium ion batteries (LIBs) is prepared via one-pot hydrothermal method and subsequent annealing. The structures and morphologies of as-prepared hybrid materials are characterized by X-ray diffraction, scanning electron microscopy, Raman spectra, FTIR and transmission electron microscopy. The results reveal that the MZO hollow microspheres with nanometer-sized building blocks are well dispersed in the RGO support. The electrochemical tests show that the hybrid material has a reversible capacity of 660 mAh/g at a current density of 100 mA/g with a coulombic efficiency of 98% after 100 cycles. Besides, a specific capacity of about 207 mAh/g is retained even at a current density as high as 1600 mA/g, exhibiting high reversibility and good capacity retention. Our results suggest that the composite of bi-component MZO hollow microspheres embedded in RGO will be promising electrode materials for low-cost, environmentally friendly and high-performance LIBs.
Keywords :
Bi-component , Hollow microspheres , Lithium ion batteries
Journal title :
Ceramics International
Serial Year :
2014
Journal title :
Ceramics International
Record number :
1276014
Link To Document :
بازگشت