Title of article :
Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xingʹan Mountains in NE China
Author/Authors :
Bor-ming Jahn، نويسنده , , Fuyuan Wu، نويسنده , , R. Capdevila، نويسنده , , F. Martineau، نويسنده , , Zhenhua Zhao ، نويسنده , , Yixian Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
28
From page :
171
To page :
198
Abstract :
In NE China, voluminous granitoids were emplaced in late Paleozoic and Mesozoic times. We report here Sr–Nd–O isotopic and elemental abundance data for two highly evolved granitic plutons, Woduhe and Baerzhe, from the Great Xingʹan Mountains. They show a rather “juvenile” Sr–Nd isotopic signature and a spectacular tetrad effect in their REE distribution patterns as well as non-CHARAC (charge-and-radius-controlled) trace element behavior. The emplacement ages are constrained at 130±4 Ma for the Woduhe and 122±5 Ma for the Baerzhe granites by Rb–Sr and Sm–Nd isotope analyses. Both granites are also characterized by low but imprecise initial 87Sr/86Sr ratios of about 0.703. The Nd–Sr isotope data argue for their generation by melting of dominantly juvenile mantle component with subordinate recycled ancient crust. This is largely compatible with the general scenario for much of the Phanerozoic granitoids emplaced in the Central Asian Orogenic Belt. The parental magmas for both the Woduhe and Baerzhe granites have undergone extensive magmatic differentiation, during which intense interaction of the residual melts with aqueous hydrothermal fluids (probably rich in F and Cl) resulted in the non-CHARAC trace element behavior and the tetrad effect of REE distribution. Both the Woduhe and Baerzhe granites show the characteristic trace element patterns of rare-metal granites, but their absolute abundances differ by as much as two orders of magnitude. The oxygen isotope compositions of the two granites have been severely disturbed. Significant 18O depletion in feldspar, but not so much in quartz, suggests that the hydrothermal alteration took place in a temperature condition of 300–500 °C. This subsolidus hydrothermal alteration is decoupled from the late-stage magma–fluid interaction at higher temperatures. Despite the two distinct and intense events of “water–rock” interaction, the Rb–Sr and Sm–Nd geochronological systems seem to have maintained closed, hence, suggesting that the two events occurred shortly after the plutonic emplacements.
Keywords :
A-type granite , REE tetrad effect , Nd–Sr isotopes , Water–rock interaction , granitoid , 18O depletion
Journal title :
lithos
Serial Year :
2001
Journal title :
lithos
Record number :
1286186
Link To Document :
بازگشت