Title of article :
A Semi-Evolutive Partially Local Filter for Data Assimilation
Author/Authors :
Ibrahim Hoteit، نويسنده , , Dinh Tuan Pham، نويسنده , , Jacques Blum، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
11
From page :
164
To page :
174
Abstract :
The singular evolutive extended Kalman (SEEK) filter has been proposed recently by Pham et al. (1997) for data assimilation into numerical oceanic models. This filter has been applied in different realistic ocean frameworks and has provided satisfactory results ( Pham et al., 1997; Verron et al., 1998). However, the SEEK filter remains expensive in real operational assimilation. To reduce cost and obtain a better representativity, we introduce the idea ‘local correction basisʹ. Such basis however cannot be made to evolve according to the model without destroying its locality property. Therefore we shall keep this basis fixed and we augment it by a few global basis vectors which evolve. The resulting semi-evolutive partially local filter is much less costly to implement than the SEEK filter and yet can yield better results. In the first application, validation twin experiments are conducted in a realistic setting of the OPA model over the tropical Pacific Ocean.
Journal title :
Marine Pollution Bulletin
Serial Year :
2001
Journal title :
Marine Pollution Bulletin
Record number :
1294602
Link To Document :
بازگشت