Title of article :
Adenosine receptor agonists: Synthesis and biological evaluation of the diastereoisomers of 2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA Original Research Article
Author/Authors :
Emidio Camaioni، نويسنده , , Emanuela Di Francesco، نويسنده , , Sauro Vittori، نويسنده , , Rosaria Volpini، نويسنده , , Gloria Cristalli، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
9
From page :
2267
To page :
2275
Abstract :
Among the recently reported 2-(ar)alkynyl derivatives of 5′-N-ethylcarboxamidoadenosine (NECA), the (R,S)-2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA [(R,S)-PHPNECA or SCH 59761] was found to be a very potent agonist at A1 and A2A receptor subtypes, with a Ki of 2.5 nM and 0.9 nM, respectively. Furthermore, this compound showed an inhibitory activity on platelet aggregation 16-fold higher than NECA, being the most potent anti-aggregatory nucleoside reported so far. Since this compound bears a chiral carbon in the side chain, the diastereoisomer separation was undertaken both by chiral HPLC and by a stereospecific synthetic method. Binding assays have shown that the (S)-diastereomer is about fivefold more potent and selective than the (R)-diastereomer as agonist of the A2A receptor subtype [(S)-PHPNECA, KiA2A = 0.5 nM; (R)-PHPNECA, KiA2A = 2.6 nM]. Functional studies indicated that (S)-PHPNECA possesses marked vasodilating activity and produces a relevant decrease in heart rate. Moreover, the (S)-diastereomer proved to be about ten times more potent than the (R)-diastereomer in inducing cardiovascular effects, in in vivo hemodynamic studies. However, the greatest difference between these two enantiomers resulted in the platelet aggregation test: in fact, the (R)-diastereomer displayed an inhibitory activity similar to that of NECA, whereas the (S)-diastereomer was 37-fold more active than NECA as an inhibitor of rabbit platelet aggregation, induced by ADP. These data suggest that (S)-PHPNECA could be a useful tool to investigate the mode of binding of agonists to the platelet adenosine receptor subtype.
Keywords :
diastereoisomer separation , Nucleosides , platelet aggregation inhibitors , Adenosine receptors
Journal title :
Bioorganic and Medicinal Chemistry
Serial Year :
1997
Journal title :
Bioorganic and Medicinal Chemistry
Record number :
1301425
Link To Document :
بازگشت