Title of article :
A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant
Author/Authors :
Sissy da S. Souza، نويسنده , , P.R. Oliveira، نويسنده , , J.X. da Cruz Neto، نويسنده , , A. Soubeyran، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
365
To page :
376
Abstract :
We present an interior proximal method with Bregman distance, for solving the minimization problem with quasiconvex objective function under nonnegative constraints. The Bregman function is considered separable and zone coercive, and the zone is the interior of the positive orthant. Under the assumption that the solution set is nonempty and the objective function is continuously differentiable, we establish the well definedness of the sequence generated by our algorithm and obtain two important convergence results, and show in the main one that the sequence converges to a solution point of the problem when the regularization parameters go to zero.
Keywords :
Bregman distances , Interior point methods , Proximal methods , Quasiconvex programming
Journal title :
European Journal of Operational Research
Serial Year :
2010
Journal title :
European Journal of Operational Research
Record number :
1312413
Link To Document :
بازگشت