Title of article :
On the complexity of optimization over the standard simplex
Author/Authors :
E. de Klerk، نويسنده , , D. den Hertog، نويسنده , , G. Elabwabi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
773
To page :
785
Abstract :
We review complexity results for minimizing polynomials over the standard simplex and unit hypercube. In addition, we derive new results on the computational complexity of approximating the minimum of some classes of functions (including Lipschitz continuous functions) on the standard simplex. The main tools used in the analysis are Bernstein approximation and Lagrange interpolation on the simplex combined with an earlier result by de Klerk et al. [A PTAS for the minimization of polynomials of fixed degree over the simplex, Theoretical Computer Science 361 (2–3) (2006) 210–225].
Keywords :
Linear programming , Multivariate Lagrange interpolation , Global optimization , Standard simplex , PTAS , Multivariate Bernstein approximation
Journal title :
European Journal of Operational Research
Serial Year :
2008
Journal title :
European Journal of Operational Research
Record number :
1314105
Link To Document :
بازگشت