Title of article :
A matrix LSQR algorithm for solving constrained linear operator equations
Author/Authors :
Hajarian، Masoud نويسنده Shahid Beheshti University ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Abstract :
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $\mathcal{A}(X)=B$
and the minimum Frobenius norm residual problem $||\mathcal{A}(X)-B||_F$
where $X\in \mathcal{S}:=\{X\in \textsf{R}^{n\times n}~|~X=\mathcal{G}(X)\}$, $\mathcal{F}$ is the linear operator from $\textsf{R}^{n\times n}$ onto $\textsf{R}^{r\times s}$,
$\mathcal{G}$ is a linear self-conjugate involution operator and
$B\in \textsf{R}^{r\times s}$.
Numerical examples are given to verify the efficiency of the constructed method.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society