Title of article :
Arens regularity of bilinear forms and unital Banach module spaces
Author/Authors :
Haghnejad Azar، Kazem نويسنده Faculty of Mathematical Sciences, University of Mohaghegh Ardabili Haghnejad Azar, Kazem
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Abstract :
Assume that $A$, $B$ are Banach algebras and that $m:A\times B\rightarrow B$, $m^\prime:A\times A\rightarrow B$ are bounded bilinear mappings. We study the relationships between Arens regularity of $m$, $m^\prime$ and the Banach algebras $A$, $B$. For a Banach $A$-bimodule $B$, we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}$-module. Let $Z_{e^{\prime\prime}}(B^{**})=B^{**}$ where $e^{\prime\prime}$ is a mixed unit of $A^{**}$. Then $B^*$ factors on both sides with respect to $A$ if and only if $B^{**}$ has a unit as $A^{**}$-module.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society