Title of article :
Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template
Author/Authors :
Xian-Ming Liu، نويسنده , , Shao-Yun Fu، نويسنده , , Hong-Mei Xiao ، نويسنده , , Chuanjun Huang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Shuttle-like α-Fe2O3 nanoparticles have been successfully synthesized via a new soft-template route using polyethylene glycol (PEG) as polymer, cetyltrimethylammonium bromide (CTAB) as surfactant and FeCl3·6H2O as iron source materials. Meanwhile, spherical α-Fe2O3 nanoparticles are also fabricated under the similar conditions without surfactant and polymer. The resultant products are characterized by means of thermalgravimetric analysis (TGA), powder X-ray diffraction (XRD), infrared (IR) spectroscopy, transmission electron micrograph (TEM), X-ray photoelectron spectra (XPS) and magnetization measurements. The homogeneous α-Fe2O3 nanoparticles with shuttle-like shape have an average length of 120 nm and a mean diameter of about 50 nm in the middle part (an average aspect ratio of about 2.5) whereas spherical α-Fe2O3 nanoparticles have a mean particle diameter of about 35 nm. Magnetic hysteresis measurements reveal that shuttle-like α-Fe2O3 nanoparticles display normal ferromagnetic behaviors while spherical α-Fe2O3 nanoparticles exhibit weak ferromagnetic behaviors at room temperature. The two types of α-Fe2O3 exhibit hysteretic features with the remanence and coercivity of 0.156 emu/g and 664 Oe, 0.048 emu/g and 110 Oe, respectively. The higher remanent magnetization and coercivity of shuttle-like α-Fe2O3 nanoparticles may be associated with the aspect ratio of α-Fe2O3 since shape anisotropy would exert a tremendous influence on their magnetic properties.
Keywords :
Hematite , Supermolecular template , Ferromagnetism , Remanence , coercivity
Journal title :
JOURNAL OF SOLID STATE CHEMISTRY
Journal title :
JOURNAL OF SOLID STATE CHEMISTRY