Title of article :
A study of preproject planning and project success using ANNs and regression models
Author/Authors :
Wang، نويسنده , , Yu-Ren and Gibson Jr.، نويسنده , , G. Edward، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
341
To page :
346
Abstract :
It has long been recognized by the industry practitioners that how well preproject planning is conducted has a great impact on project outcome. Through industry project data collection and model analysis, this research intends to investigate the relationship between preproject planning and project success. Preproject planning and project performance information from 62 industrial projects and 78 building projects, representing approximately $5 billion U.S.D. in total construction cost, is collected and used for this research analysis. Based on the information obtained, preproject planning is identified as having direct impact on the project success (cost and schedule performance). Two techniques were then used to develop models for predicting cost and schedule performance: statistical regression analysis, and artificial neural networks (ANNs). The research results provide a valuable source of information that supports better planning in the early stage of the project life cycle and have positive impact on the final project outcome.
Keywords :
Preproject planning , Project success , Regression model , ANN model
Journal title :
Automation in Construction
Serial Year :
2010
Journal title :
Automation in Construction
Record number :
1338175
Link To Document :
بازگشت