Title of article :
On $z$-ideals of pointfree function rings
Author/Authors :
Dube، Themba نويسنده University of South Africa , , Ighedo، Oghenetega نويسنده University of South Africa ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Abstract :
Let $L$ be a completely regular frame and $\mathcal{R}L$ be the
ring of continuous real-valued functions on $L$. We show that the
lattice $\Zid(\mathcal{R}L)$ of $z$-ideals of $\mathcal{R}L$ is a
normal coherent Yosida frame, which extends the corresponding $C(X)$
result of Mart\ʹ{i}nez and Zenk. This we do by exhibiting
$\Zid(\mathcal{R}L)$ as a quotient of $\Rad(\mathcal{R}L)$, the
frame of radical ideals of $\mathcal{R}L$. The saturation quotient
of $\Zid(\mathcal{R}L)$ is shown to be isomorphic to the
Stone-\v{C}ech compactification of $L$. Given a morphism $h\colon
L\to M$ in $\mathbf{CRegFrm}$, $\Zid$ creates a coherent frame
homomorphism $\Zid(h)\colon\Zid(\mathcal{R}L)\to\Zid(\mathcal{R}M)$
whose right adjoint maps as $(\mathcal{R}h)^{-1}$, for the induced
ring homomorphism $\mathcal{R}h\colon\mathcal{R}L\to\mathcal{R}M$.
Thus, $\Zid(h)$ is an $s$-map, in the sense of Mart\`{i}nez \cite{Mar1}, precisely when
$\mathcal{R}(h)$ contracts maximal ideals to maximal ideals.
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society