Title of article :
Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact
Author/Authors :
J.A. Artero-Guerrero، نويسنده , , J. Pernas-S?nchez، نويسنده , , D. Varas، نويسنده , , J. Lopez-Puente، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
12
From page :
286
To page :
297
Abstract :
In recent years, vulnerability against high-velocity impact loads has become an increasingly critical issue in the design of composite aerospace structures. The effects of Hydrodynamic Ram (HRAM), a phenomenon that occurs when a high-energy object penetrates a fluid-filled container, are of particular concern in the design of wing fuel tanks for aircraft because it has been identified as one of the important factors in aircraft vulnerability. The projectile transfers its momentum and kinetic energy through the fluid to the surrounding structure, increasing the risk of catastrophic failure. In the present paper, the commercial finite-element code ABAQUS/Explicit has been used to simulate an HRAM event due to the impact of a steel spherical projectile into a water-filled woven CFRP square tube. In order to simulate the fluid–structure interaction, the Coupled Eulerian Lagrangian (CEL) approach is used. Experimental tests which indicate the pressure at different points of the fluid, strains of the walls and cavity evolution for different impact velocities are compared with the numerical results in order to assess the validity and accuracy of CEL technique in reproducing such a complex phenomenon. Also, several numerical impacts at different initial projectile velocities are performed to study its influence in the HRAM phenomenon.
Keywords :
Fluid-filled tank , Carbon fiber , Hydrodynamic Ram , Fluid–structure interaction , Impact
Journal title :
COMPOSITE STRUCTURES
Serial Year :
2013
Journal title :
COMPOSITE STRUCTURES
Record number :
1345241
Link To Document :
بازگشت