Author/Authors :
تاميز چلوان، ت. نويسنده Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India Tamizh Chelvam, T. , نيديا، س. نويسنده Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India Nithya, S.
Abstract :
Let L be a lattice with the least element 0. An element x 2 L is a zero divisor if x^y = 0
for some y 2 L = L n f0g. The set of all zero divisors is denoted by Z(L). We associate a simple
graph ??(L) to L with vertex set Z(L) = Z(L) n f0g, the set of non-zero zero divisors of L and distinct
x; y 2 Z(L) are adjacent if and only if x ^ y = 0. In this paper, we obtain certain properties and
diameter and girth of the zero divisor graph ??(L). Also we nd a dominating set and the domination
number of the zero divisor graph ??(L).