Title of article :
Modeling permeation through anisotropic zeolite membranes with nanoscopic defects
Author/Authors :
Peter H. Nelson، نويسنده , , Michael Tsapatsis، نويسنده , , Scott M. Auerbach، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
11
From page :
245
To page :
255
Abstract :
We have modeled permeation through anisotropic zeolite membranes with nanoscopic defects that create shortcuts perpendicular to the transmembrane direction (x). We have found that the dimensionless ratio Dy/(kdΔy) can be used to estimate whether the shortcuts contribute significantly to the overall flux. Here Dy is the diffusion coefficient for motion in the plane of the membrane, kd is the rate of desorbing into defect voids, and Δy is the spacing between adjacent defects. For values of Dy/(kdΔy)⪢1, we find that shortcuts increase the flux by significant amounts. The magnitude of the flux is increased as the imperfection spacing Δy is decreased. For small values of Δy, permeation through shortcuts becomes sorption-limited so that decreasing Δy further does not increase the flux through a single shortcut. However, as Δy is decreased, the concentration of shortcuts increases, thereby increasing the total contribution of the shortcuts to the flux. We have found regimes where increasing Δy or decreasing Dy decreases the overall flux, showing that permeation can be diffusion-limited by motion perpendicular to the transmembrane direction.
Keywords :
Diffusion , Gas and vapor permeation , Theory , Microporous membranes
Journal title :
Journal of Membrane Science
Serial Year :
2001
Journal title :
Journal of Membrane Science
Record number :
1350232
Link To Document :
بازگشت