Title of article :
The effect of imposed flux on biofouling in reverse osmosis: Role of concentration polarisation and biofilm enhanced osmotic pressure phenomena
Author/Authors :
T.H. Chong، نويسنده , , F.S. Wong، نويسنده , , A.G. Fane، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
840
To page :
850
Abstract :
This paper describes a systematic study of biofouling in reverse osmosis process using model bacteria of Pseudomonas fluorescens and employing a sodium chloride tracer response technique for fouling characterization. It was found that the growth of biofilm at constant flux following initial bacteria colonization of the membrane surface increased with imposed flux. The rationale was that biofilm growth was nutrient dependent, where the nutrient availability at the membrane wall was controlled by the magnitude of concentration polarization, which is driven by flux. The salt tracer response showed that the biofouling comprised a hydraulic resistance and induced an enhanced osmotic pressure phenomenon; known as the biofilm enhanced osmotic pressure (BEOP) effect [M. Herzberg, M. Elimelech, Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure, Journal of Membrane Science 295 (2007) 11–20], due to hindered back diffusion of solutes through the tortuous path of the heterogeneous structure of the biofilm. For the conditions studied, the contribution of BEOP to transmembrane pressure increase was greater than the hydraulic resistance.
Keywords :
Reverse osmosis , Biofouling , Concentration polarisation , Biofilm enhanced osmotic pressure , Sodium chloride tracer response
Journal title :
Journal of Membrane Science
Serial Year :
2008
Journal title :
Journal of Membrane Science
Record number :
1354212
Link To Document :
بازگشت