Title of article :
Alcohol splitting for the production of methyl methoxyacetate: Integration of ion-exchange with bipolar membrane electrodialysis
Author/Authors :
Qiuhua Li، نويسنده , , Chuanhui Huang، نويسنده , , Tongwen Xu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
As a green technology for organic synthesis, alcohol splitting by using bipolar membrane electrodialysis (BMED) is restricted from industrial practice due to the unacceptable electrical resistance of the organic medium. This research proposes an integration strategy to reduce the electrical resistance, i.e., filling ion-exchange resins in a BMED stack. This strategy is adopted for the production of methyl methoxyacetate in methanol, and the performance of 4 kinds of ion-exchange resins are assessed in terms of the voltage drop, product yield, and current efficiency. Under the experimental conditions, the lowest voltage drop was achieved by using D201 macroreticular anion-exchange resin, and the voltage drop decreased by 44.3–61.4%. However, there was a slight decrease in the product yield and current efficiency due to the adsorption of methyl methoxyacetate onto the resins. As a compromise, 201*7 gel-type anion-exchange resin is the best choice.
Keywords :
Electrodialysis , Ion-exchange resins , Methyl methoxyacetate , Bipolar membrane
Journal title :
Journal of Membrane Science
Journal title :
Journal of Membrane Science