Title of article :
Rejection and fate of trace organic compounds (TrOCs) during membrane distillation
Author/Authors :
Kaushalya C. Wijekoon، نويسنده , , Faisal I. Hai، نويسنده , , Jinguo Kang، نويسنده , , William E. Price، نويسنده , , Tzahi Y. Cath، نويسنده , , Long D. Nghiem، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
7
From page :
636
To page :
642
Abstract :
In this study, we examined the feasibility of membrane distillation (MD) for removing trace organic compounds (TrOCs) during water and wastewater treatment. A set of 29 compounds was selected to represent major TrOC groups, including pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals, and pesticides that occur ubiquitously in municipal wastewater. Results reported here suggest that rejection and fate and transport of TrOCs during MD are governed by their volatility and, to a lesser extent, hydrophobicity. All TrOCs with pKH>9 (which can be classified as non-volatile) were well removed by MD. Among the 29 TrOCs investigated in this study, three compounds (i.e. 4-tert-octylphenol, 4-tert-butylphenol and benzophenone) possess moderate volatility (pKH<9) and therefore had the lowest rejection efficiencies of 54%, 73% and 66%, respectively. The results suggest that the rejection of TrOCs with pKH<9 may be governed by the interplay between their hydrophobicity and volatility. In addition, the fate and transport of the TrOCs during the MD process was also investigated. Hydrophilic TrOCs having negligible volatility were concentrated in the feed, while hydrophobic compounds with moderate volatility were substantially lost due to evaporation or adsorption. When MD treatment was integrated with a thermophilic membrane bioreactor (MBR), near complete removal (>95%) of all 29 TrOCs investigated in this study was achieved despite their diverse physicochemical properties (i.e. hydrophobicity, persistency and volatility). The results suggest that MD could be a promising post-treatment to be used in conjunction with thermophilic MBR for TrOC removal.
Keywords :
Fate and transport , Hydrophobicity/hydrophilicity , Trace organic compounds (TrOCs) , Direct contact membrane distillation (DCMD) , volatility
Journal title :
Journal of Membrane Science
Serial Year :
2014
Journal title :
Journal of Membrane Science
Record number :
1360354
Link To Document :
بازگشت