Title of article :
Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models
Author/Authors :
Kawai، نويسنده , , Masayoshi and Kurishita، نويسنده , , Hiroaki and Kokawa، نويسنده , , Hiroyuki and Watanabe، نويسنده , , Seiichi and Sakaguchi، نويسنده , , Norihito and Kikuchi، نويسنده , , Kenji and Saito، نويسنده , , Shigeru and Yoshiie، نويسنده , , Toshimasa and Iwase، نويسنده , , Hiroshi and Ito، نويسنده , , Takahiro and Hashimoto، نويسنده , , Satoshi and Kaneko، نويسنده , , Yoshihisa and Futakawa، نويسنده , , Masatoshi and Ishino، نويسنده , , Shiori، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
16
To page :
25
Abstract :
This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead–bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GBE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.
Journal title :
Journal of Nuclear Materials
Serial Year :
2012
Journal title :
Journal of Nuclear Materials
Record number :
1361513
Link To Document :
بازگشت