Author/Authors :
Wei، نويسنده , , Chao-Chen and Aitkaliyeva، نويسنده , , Assel and Luo، نويسنده , , Zhiping and Ewh، نويسنده , , Ashley and Sohn، نويسنده , , Y.H. and Kennedy، نويسنده , , J.R. and Sencer، نويسنده , , Bulent H. and Myers، نويسنده , , M.T. and Martin، نويسنده , , M. and Wallace، نويسنده , , J. and General، نويسنده , , M.J. and Shao، نويسنده , , Lin، نويسنده ,
Abstract :
We have studied the radiation effects in Fe–Zr diffusion couples, formed by thermal annealing of a mechanically bonded binary system at 850 °C for 15 days. After irradiation with 3.5 MeV Fe ions at 600 °C, a cross sectional specimen was prepared by using a focused-ion-beam-based lift out technique and was characterized using scanning/transmission electron microscopy, selected-area diffraction and X-ray energy dispersive spectroscopy analyses. Comparison studies were performed in localized regions within and beyond the ion projected range and the following observations were obtained: (1) the interaction layer consists of FeZr3, FeZr2, Fe2Zr, and Fe23Zr6; (2) large Fe23Zr6 particles with smaller core particles of Zr-rich Fe2Zr are found within the α-Fe matrix; (3) Zr diffusion is significantly enhanced in the ion bombarded region, leading to the formation of an Fe–Zr compound; (4) grains located within the interaction layer are much smaller in the ion bombarded region and are associated with new crystal growth and nanocrystal formation; and (5) large α-Fe particles form on the surface of the Fe side, but the particles are limited to the region close to the interaction layer. These studies reveal the complexity of the interaction phase formation in an Fe–Zr binary system and the accelerated microstructural changes under irradiation.