Title of article :
Recombination and transport through localized states in hydrogenated amorphous and microcrystalline silicon
Author/Authors :
Fuhs، نويسنده , , Walther، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Electrical transport and recombination mechanisms in hydrogenated amorphous silicon, a-Si:H, are determined by localized band-tail states and deep defects. At low temperatures (T < 100 K) the photoluminescence originates from tunneling recombination between localized band-tail states and the photoconductivity arises from hopping in the band tail. This review describes the present understanding of transport and recombination mechanisms in this low-temperature regime with a focus on two aspects: (i) the kinetics of carrier recombination and the competition between geminate and non-geminate recombination, and (ii) the microscopic identification of recombination paths by magnetic resonance techniques and the proof of excitonic recombination. Inspite of its complex nanocrystalline morphology, hydrogenated microcrystalline silicon, μc-Si:H, behaves in many respects similarly to a-Si:H in that the low-temperature properties are also determined by disorder-induced localized band-tail states.
Keywords :
Amorphous semiconductors , solar cells , Defects , Luminescence , photoconductivity , electron spin resonance , Silicon
Journal title :
Journal of Non-Crystalline Solids
Journal title :
Journal of Non-Crystalline Solids