Title of article :
Mixed alkaline earth effect in sodium aluminosilicate glasses
Author/Authors :
Kjeldsen، نويسنده , , Jonas and Smedskjaer، نويسنده , , Morten M. and Mauro، نويسنده , , John C. and Youngman، نويسنده , , Randall E. and Huang، نويسنده , , Liping and Yue، نويسنده , , Yuanzheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR spectroscopies to obtain insights into the structural and topological features of these glasses, and hence into the mixed alkaline earth effect. We demonstrate that the mixed alkaline earth effect manifests itself as a maximum in the amount of bonded tetrahedral units and as a minimum in liquid fragility index, glass transition temperature, Vickers microhardness, and isokom temperatures (viz., the temperatures at η = 1013.5 and 1012.2 Pa s). The observed minima in fragility, glass transition temperature, and isokom temperature are ascribed to bond weakening in the local structural environment around the network modifiers. We suggest that, since the elastic properties of the investigated system are compositionally independent, the minimum in Vickers microhardness is closely correlated to the minimum in isokom temperatures. Both of these properties are related to plastic flow and the translational motion of structural units, and hence both may be related to the same underlying topological constraints. This indicates that there might not be any significant difference in the onset of the rigid sub-Tg constraints for the investigated compositions.
Keywords :
Aluminosilicate glasses , Mixed alkaline earth effect , VISCOSITY , Hardness , Dynamic structure model
Journal title :
Journal of Non-Crystalline Solids
Journal title :
Journal of Non-Crystalline Solids