Title of article :
Building simulation approaches for the training of automated data analysis tools in building energy management
Author/Authors :
de Wilde، نويسنده , , Pieter and Martinez-Ortiz، نويسنده , , Carlos and Pearson، نويسنده , , Darren and Beynon، نويسنده , , Ian and Beck، نويسنده , , Martin and Barlow، نويسنده , , Nigel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The field of building energy management, which monitors and analyses the energy use of buildings with the aim to control and reduce energy expenditure, is seeing a rapid evolution. Automated meter reading approaches, harvesting data at hourly or even half-hourly intervals, create a large pool of data which needs analysis. Computer analysis by means of machine learning techniques allows automated processing of this data, invoking expert analysis where anomalies are detected. However, machine learning always requires a historical dataset to train models and develop a benchmark to define what constitutes an anomaly. Computer analysis by means of building performance simulation employs physical principles to predict energy behaviour, and allows the assessment of the behaviour of buildings from a pure modelling background. This paper explores how building simulation approaches can be fused into energy management practice, especially with a view to the production of artificial bespoke benchmarks where historical profiles are not available. A real accommodation block, which is subject to monitoring, is used to gather an estimation of the accuracy of this approach. The findings show that machine learning from simulation models has a high internal accuracy; comparison with actual metering data shows prediction errors in the system (20%) but still achieves a substantial improvement over industry benchmark values.
Keywords :
Building performance simulation , BENCHMARKING , Energy management , Machine Learning , Automated meter reading
Journal title :
ADVANCED ENGINEERING INFORMATICS
Journal title :
ADVANCED ENGINEERING INFORMATICS