Title of article :
Electrohydrodynamic nano-spraying of ethanolic natural plant extracts
Author/Authors :
Jung، نويسنده , , Jae Hee and Park، نويسنده , , Sun Young and Lee، نويسنده , , Jung Eun and Nho، نويسنده , , Chu Won and Lee، نويسنده , , Byung Uk and Bae، نويسنده , , Gwi Nam، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
12
From page :
725
To page :
736
Abstract :
Aerosol techniques have recently been used to process natural products for medical, pharmaceutical, and environmental health applications. In particular, electrohydrodynamic spraying, or electrospraying, which is a method of atomizing liquids by means of electrical forces, is a promising aerosol technology because it generates non-agglomerated particles due to repulsive electrical forces between particles with unipolar charges. We investigated the characteristics of natural-product nanoparticles generated via electrospraying. A plant extract containing a natural-product (Sophora flavescens) was sprayed in steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration. The electrosprayed natural-product particles maintained their bimodal size distribution with good stability and uniformity for longer than 1 h. Compared to generation characteristics observed using a conventional nebulization process, the electrospray technique produced non-agglomerated, spherical particles and resulted in a narrow size range for both peaks. The size distribution of electrosprayed particles was controlled by varying the suspension flow rate of S. flavescens extract. Also, they had a high average charge per particle and positive polarity. The nanoparticles maintained the major chemical composition of the original S. flavescens ethanolic extract during electrospraying. Our investigation demonstrated that the electrospray process, driven by high-intensity electric fields, can be used to generate nanoscale particles from natural products.
Keywords :
Aerosol process , Nanoparticles , natural product , electrospray , Plant extract
Journal title :
Journal of Aerosol Science
Serial Year :
2011
Journal title :
Journal of Aerosol Science
Record number :
1385982
Link To Document :
بازگشت