Title of article :
ON THE ROLES OF COMPLEMENTARY AND ADMISSIBLE BOUNDARY CONSTRAINTS IN FOURIER SOLUTIONS TO THE BOUNDARY VALUE PROBLEMS OF COMPLETELY COUPLED r TH ORDER PDES
Author/Authors :
CHAUDHURI، نويسنده , , R.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
53
From page :
261
To page :
313
Abstract :
A heretofore unavailable double Fourier series based approach, for obtaining non-separable solution to a system of completely coupled linear r th order partial differential equations with constant coefficients and subjected to general (completely coupled) boundary conditions, has been presented. The method has been successfully implemented to solve a class of hitherto unsolved boundary-value problems, pertaining to free and forced vibrations of arbitrarily laminated anisotropic doubly curved thin panels of rectangular planform, with arbitrarily prescribed (both symmetric and asymmetric with respect to the panel centerlines) admissible boundary conditions and subjected to general transverse loading. ng solutions such as those due to Navier or Levy are based on the well-known method of separation of variables. Such solutions represent particular solutions whenever the method of separation of variables work, and when these particular solution functions fortuitously satisfy the boundary conditions. For derivation of the complementary solution, the complementary boundary constraints are introduced through boundary discontinuities of some of the particular solution functions and their partial derivatives. Such discontinuities form sets of measure zero. s cases of lamination, geometry and dynamic response (forced and free vibrations) of a class of thin anisotropic laminated shells (curved panels) have been shown to follow from the above. Six sets of boundary conditions are used to illustrate the present method for the derivation of complementary solutions. Navier-type solutions whenever available form special cases of the present general solution.
Journal title :
Journal of Sound and Vibration
Serial Year :
2002
Journal title :
Journal of Sound and Vibration
Record number :
1392023
Link To Document :
بازگشت