Title of article :
Basin boundaries in asymmetric vibrations of a circular plate
Author/Authors :
Park، نويسنده , , H.D. and Lee، نويسنده , , W.K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation, we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653–665] in which at most three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.
Journal title :
Journal of Sound and Vibration
Journal title :
Journal of Sound and Vibration