Title of article :
Analytical prediction of chatter stability for variable pitch and variable helix milling tools
Author/Authors :
Sims، نويسنده , , N.D. and Mann، نويسنده , , B. and Huyanan، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
23
From page :
664
To page :
686
Abstract :
Regenerative chatter is a self-excited vibration that can occur during milling and other machining processes. It leads to a poor surface finish, premature tool wear, and potential damage to the machine or tool. Variable pitch and variable helix milling tools have been previously proposed to avoid the onset of regenerative chatter. Although variable pitch tools have been considered in some detail in previous research, this has generally focussed on behaviour at high radial immersions. In contrast there has been very little work focussed on predicting the stability of variable helix tools. In the present study, three solution processes are proposed for predicting the stability of variable pitch or helix milling tools. rst is a semi-discretisation formulation that performs spatial and temporal discretisation of the tool. Unlike previously published methods this can predict the stability of variable pitch or variable helix tools, at low or high radial immersions. cond is a time-averaged semi-discretisation formulation that assumes time-averaged cutting force coefficients. Unlike previous work, this can predict stability of variable helix tools at high radial immersion. ird is a temporal-finite element formulation that can predict the stability of variable pitch tools with a constant uniform helix angle, at low radial immersion. del predictions are compared to previously published work on variable pitch tools, along with time-domain model simulations. Good agreement is found with both previously published results and the time-domain model. Furthermore, cyclic-fold bifurcations were found to exist for both variable pitch and variable helix tools at lower radial immersions.
Journal title :
Journal of Sound and Vibration
Serial Year :
2008
Journal title :
Journal of Sound and Vibration
Record number :
1398789
Link To Document :
بازگشت