Title of article :
Mechanical properties, anisotropic swelling behaviours and structures of jellyfish mesogloea
Author/Authors :
Zhu، نويسنده , , Jintang and Wang، نويسنده , , Xuezhen and He، نويسنده , , Changcheng and Wang، نويسنده , , Huiliang، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2012
Abstract :
Learning from nature is a promising way for designing and fabricating new materials with special properties. As the first step, we need to understand the structures and properties of the natural materials. In this work, we paid attention to the mesogloea of an edible jellyfish (Rhopilema esculenta Kishinouye) and mainly focused on its structure, mechanical and swelling properties. Scanning electron microscope (SEM) investigations show that jellyfish mesogloea has a well-developed anisotropic microstructure, which consists of nano-sized membranes connected with many fibres. The tensile and compressive properties of swollen and dried jellyfish mesogloea samples are measured. The jellyfish mesogloea displays very high tensile strength (0.17 MPa) and compressive strength (1.43 MPa) even with 99 wt % water. The mechanical properties of jellyfish mesogloea exceed most synthetic hydrogels with similar or even lower water contents. Swelling in acidic and basic buffer solutions weakens the mechanical properties of jellyfish mesogloea. The dried jellyfish mesogloea has very high tensile strength and modulus, which are very similar to those of synthetic plastics. The swelling properties of jellyfish mesogloea in solutions with different pH values were studied. The jellyfish mesogloea exhibits pH-sensitive and anisotropic swelling properties. The jellyfish mesogloea swells (expands) in height but deswells (shrinks) in length and width, without significant change in the volume. This phenomenon has never been reported for synthetic hydrogels. This study may provide gel scientists new ideas in designing and fabricating hydrogels with well-defined microstructures and unique mechanical and swelling properties.
Keywords :
mechanical properties , Jellyfish mesogloea , Anisotropic swelling , hydrogels
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials