Title of article :
Biocompatibility of Ti-alloys for long-term implantation
Author/Authors :
Abdel-Hady Gepreel، نويسنده , , Mohamed and Niinomi، نويسنده , , Mitsuo، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2013
Pages :
9
From page :
407
To page :
415
Abstract :
The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Youngʹs modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Youngʹs modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation.
Keywords :
Ti-alloys , Long-term implantation , Low cost implants , Implants , Compatibility
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Serial Year :
2013
Journal title :
Journal of the Mechanical Behavior of Biomedical Materials
Record number :
1405913
Link To Document :
بازگشت