Title of article :
Linear resonance in viscous films on inclined wavy planes
Author/Authors :
Wierschem، نويسنده , , A. and Bontozoglou، نويسنده , , V. and Heining، نويسنده , , C. and Uecker، نويسنده , , H. and Aksel، نويسنده , , N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We study viscous gravity-driven films flowing over periodically undulated substrates. Linear analysis describes steady flow along small amplitude corrugations for films of arbitrary thickness. Solving the resulting system numerically, we demonstrate resonance (or, possibly, near resonance) and identify different behaviours for thin, intermediate and thick films. Approximating the leading-order velocity profile by the free surface value allows for an analytic solution, which – in the limit of high Reynolds numbers – recovers the different regimes and reveals the relevant physical mechanisms. Our results support the view that the resonance is associated with an interaction of the undulated film with capillary-gravity waves travelling against the mean flow direction. As a consequence, the resonance peak is attained under conditions that render the wave phase velocity equal to zero in the laboratory reference frame, and thus permit direct exchange of energy between the steadily deformed film and the free surface.
Keywords :
Capillary-gravity waves , resonance , free-surface flow , Bottom undulation , Linear Stability , Orr–Sommerfeld equation
Journal title :
International Journal of Multiphase Flow
Journal title :
International Journal of Multiphase Flow