Title of article :
Effect of Ar or N2 sintering atmosphere on the high-temperature oxidation behaviour of pressureless liquid-phase-sintered α-SiC in air
Author/Authors :
Rodrيguez-Rojas، نويسنده , , F. J. Ortiz، نويسنده , , A.L. and Borrero-Lَpez، نويسنده , , O. and Guiberteau، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The effect of the Ar or N2 sintering atmosphere on the oxidation behaviour of pressureless liquid-phase-sintered (PLPS) α-SiC was studied. PLPS α-SiC specimens processed under Ar or N2 atmospheres were isothermally oxidized at 1100–1450 °C in air for up to 500 h, and their oxidation kinetics, activation energy, and rate-controlling mechanisms were compared. It was found that, regardless of the sintering atmosphere, the oxidation is passive due to the formation of oxide scales. In addition, below 1350 °C the oxidation is protective, with a kinetics that follows initially the arctan-rate law and then the parabolic-rate law. However, from 1350 °C onwards the oxidation becomes only semi-protective, with a kinetics that obeys the arctan-rate law briefly and then the paralinear-rate law. Furthermore, the activation energies and rate-controlling mechanisms are similar for the arctan and paralinear oxidations, but different for the parabolic oxidation. It was also observed that the N2-processed material oxidizes more slowly than the Ar-processed material below 1200 °C due to a greater crystallization of its oxide scale, whereas above 1200 °C the Ar-processed material is more oxidation-resistant due to greater viscosity of its oxide liquid. Implications concerning the optimization of the processing route of PLPS SiC for high-temperature applications in air are discussed.
Keywords :
SiC , liquid-phase sintering , Oxidation
Journal title :
Journal of the European Ceramic Society
Journal title :
Journal of the European Ceramic Society