Title of article :
Carbon nanotube/boehmite-derived alumina ceramics obtained by hydrothermal synthesis and spark plasma sintering (SPS)
Author/Authors :
Zaman، نويسنده , , Ali Can and Ustünda?، نويسنده , , Cem B. and Celik، نويسنده , , Ali and Kara، نويسنده , , Alpagut and Kaya، نويسنده , , Figen and Kaya، نويسنده , , Cengiz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Preparation, structure and properties of hydrothermally treated carbon nanotube/boehmite (CNT/γ-AlOOH) and densification with spark plasma sintering of Al2O3 and CNT/Al2O3 nanocomposites were investigated. Hydrothermal synthesis was employed to produce CNT/boehmite from an aluminum acetate (Al(OH)(C2H3O2)2) and multiwall-CNTs mixture (200 °C/2 h.). TEM observations revealed that the size of the cubic shape boehmite particles lies around 40 nm and the presence of the interaction between surface functionalized CNTs and boehmite particles acts to form ‘nanocomposite particles’. Al2O3 and CNT/Al2O3 compact bodies were formed by means of spark plasma sintering (SPS) at 1600 °C for 5 min using an applied pressure of 50MPa resulting in the formation of stable α-Al2O3 phase and CNT–alumina compacts with nearly full density. It was also found that CNTs tend to locate along the alumina grain boundaries and therefore inhibit the grain coarsening and cause inter-granular fracture mode. The DC conductivity measurements reveal that the DC conductivity of CNT/Al2O3 is 10−4 S/m which indicate that there is a 4 orders of magnitude increase in conductivity compared to monolithic Al2O3. The results of the microhardness tests indicate a slight increase in hardness for CNT/Al2O3 (28.35 GPa for Al2O3 and 28.57 GPa for CNT/Al2O3).
Keywords :
hydrothermal synthesis , spark plasma sintering , Al2O3 , Carbon nanotube
Journal title :
Journal of the European Ceramic Society
Journal title :
Journal of the European Ceramic Society