Title of article :
High temperature nanobalance sensor based on langasite
Author/Authors :
Fritze، نويسنده , , H and Tuller، نويسنده , , H.L and Seh، نويسنده , , H and Borchardt، نويسنده , , G، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
5
From page :
103
To page :
107
Abstract :
Desirable nanobalance applications such as thermogravimetry on thin films and gas sensing based on stoichiometry change of thin films at elevated temperatures require high temperature stable piezoelectric materials. However, the application temperature of current nanobalances is limited to approximately 450°C due to the intrinsic properties of standard piezoelectric materials. als such as langasite (La3Ga5SiO14) and related compounds are promising candidates for piezoelectric applications at high temperatures. Therefore, this material was investigated with respect to its ability to serve as a high temperature nanobalance. ite resonators are shown to exhibit bulk oscillations at temperatures of up to 900°C. The peak frequency of the real part of the impedance spectra is chosen as the characteristic frequency. At 800°C, the mass load response for a 0.78-mm thick resonator is 6.49 Hz cm2 μg−1. At temperatures above 900°C, the bulk resistivity of the resonator devices significantly attenuates the resonance signal. ite is found to be insensitive to oxygen partial pressures to temperatures of up to at least 600°C. Finally, the operation of a gas sensor using a langasite nanobalance with integrated TiO2 film is demonstrated at elevated temperatures for the first time.
Keywords :
Nanobalance , high temperature , Langasite , Gas sensor
Journal title :
Sensors and Actuators B: Chemical
Serial Year :
2001
Journal title :
Sensors and Actuators B: Chemical
Record number :
1414398
Link To Document :
بازگشت