Title of article :
Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran larvae
Author/Authors :
Plymale، نويسنده , , Ruth and Grove، نويسنده , , Michael J. and Cox-Foster، نويسنده , , Diana and Ostiguy، نويسنده , , Nancy and Hoover، نويسنده , , Kelli، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
737
To page :
749
Abstract :
The peritrophic matrix (PM) lines the midgut of most insects, providing protection to the midgut epithelial cells while permitting passage of nutrients and water. Herein, we provide evidence that plant-mediated alteration of the PM contributes to the well-documented inhibition of fatal infection by Autographa californica multiple nucleopolyhedrovirus (AcMNPV) of Heliothis virescens F. larvae fed cotton foliage. We examined the impact of the PM on pathogenesis using a viral construct expressing a reporter gene (AcMNPV-hsp70/lacZ) orally inoculated into larvae with either intact PMs or PMs disrupted by Trichoplusia ni granulovirus occlusion bodies containing enhancin, known to degrade insect intestinal mucin. Larvae possessing disrupted PMs displayed infection foci (lacZ signaling) earlier than those with intact PMs. We then examined PMs from larvae fed artificial diet or plant foliage using electron microscopy; foliage-fed larvae had significantly thicker PMs than diet-fed larvae. Moreover, mean PM width was inversely related to both the proportion of larvae with lacZ signaling at 18 h post-inoculation and the final percentage mortality from virus. Thus, feeding on foliage altered PM structure, and these foliage-mediated changes reduced baculoviral efficacy. These data indicate that the PM is an important factor determining the success of an ingested pathogen in foliage-fed lepidopteran larvae.
Keywords :
Trichoplusia ni granulovirus , tritrophic interactions , Midgut physiology , Heliothis virescens , Autographa californica nucleopolyhedrovirus
Journal title :
Journal of Insect Physiology
Serial Year :
2008
Journal title :
Journal of Insect Physiology
Record number :
1414865
Link To Document :
بازگشت