Title of article :
Stiffness determination of angular-contact ball bearings by using neural network
Author/Authors :
Kang، نويسنده , , Yuan and Huang، نويسنده , , Chih-Ching and Lin، نويسنده , , Chorng-Shyan and Shen، نويسنده , , Ping-Chen and Chang، نويسنده , , Yeon-Pun، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2006
Pages :
9
From page :
461
To page :
469
Abstract :
All angular-contact ball bearings have similar features regarding geometry, mechanism, and structure. The stiffness of this type of bearings can be related to geometry, dimension, and operating conditions by a very complex function. This function involves high order and coupled variables. This study presents this stiffness function for all angular-contact ball bearings by a back-propagation neural network method (BPNN), which is trained by using several (not all) samples. The utility of the BPNN is demonstrated for actual cases. Each are catalogued SKF series angular-contact ball bearings.
Keywords :
Angular-contact ball bearing , neural network , Jones–Harris method , Stiffness determination
Journal title :
Tribology International
Serial Year :
2006
Journal title :
Tribology International
Record number :
1425308
Link To Document :
بازگشت