Title of article :
High temperature friction and wear performances of Ti/Cu-doped carbonaceous mesophases
Author/Authors :
Ruijun، نويسنده , , Zhang and Hong، نويسنده , , Wang and Yanjie، نويسنده , , Li، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Abstract :
Incorporation of metallic elements Ti and Cu into the carbonaceous mesophase (CM) through mechanical alloying was performed in a high energy ball mill apparatus. The structures for the raw and Ti/Cu-doped carbonaceous mesophases were characterized by X-ray diffractiometer. The friction and wear behavior of the Ti/Cu-doped CMs as lubricating additives at different applied loads and temperatures were investigated using a MMU-5G high temperature friction and wear tester. Worn morphologies of the lower 45# steel specimens were observed by scanning electron microscope. The carbonaceous substances on the worn surfaces were examined by Raman spectroscopic technique. The results have shown that the Ti/Cu-doped CM through mechanical alloying shows a drop in the crystallinity in comparison to that for the raw CM, implying a transition to the amorphous structures. The Ti/Cu-doped CMs through mechanical alloying, when used as lubricating additives, displayed an obvious high temperature anti-friction and wear resistant effect, and the larger the applied load, the lower the friction coefficient and the wear severity. In addition, as the applied load increases, the carbonaceous substances on the worn surfaces show a rise in the ordered degree, and the corresponding microcrystalline planar size (La) for the carbonaceous substances becomes larger.
Keywords :
Carbonaceous mesophase , Titanium , Copper , Crystalline structure , High temperature anti-friction and wear resistant effect , Graphitization
Journal title :
Tribology International
Journal title :
Tribology International