Title of article :
Design of a six-axis micro-scale nanopositioner—μHexFlex
Author/Authors :
Chen، نويسنده , , Shih-Chi and Culpepper، نويسنده , , Martin L.، نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی سال 2006
Pages :
11
From page :
314
To page :
324
Abstract :
This paper presents the design of a small-scale nanopositioner, the μHexFlex, which is comprised of a six-axis compliant mechanism and three pairs of two-axis thermo-mechanical micro-actuators. In this paper, we cover the modeling, design and fabrication of the μHexFlex. Specific attention is given to: (1) the use of constraint-based design in generating the compliant mechanism design, (2) the modeling of the actuators, and (3) the system model which links the actuator input and mechanism response. The measured, quasi-static performance of a 3 mm diameter prototype shows a maximum range of 8.4 μm × 12.8 μm × 8.8 μm and 19.2 mrad × 17.5 mrad × 33.2 mrad (1.1° × 1.0° × 1.9°). Experimental results indicate that a constant mechanical/electrical material property system model may be used to predict the position and orientation over a range of 3.0 μm × 4.4 μm × 3.0 μm and 6.3 mrad × 6.3 mrad × 8.7 mrad (0.36° × 0.36° × 0.5°). The dynamic characteristics of the device were investigated experimentally. Experimental results show a lowest natural frequency of 4 kHz. The resolution characteristics of the device have been measured at 1 Å/mV. The device was created using deep reactive ion etching (DRIE). Bulk fabrication costs are estimated at less than $ 2 per device.
Keywords :
Constraint-based design , Compliant Mechanism , Microfabrication , Six-axis , flexure , Thermo-mechanical actuator , Nanopositioner , HexFlex
Journal title :
Precision Engineering
Serial Year :
2006
Journal title :
Precision Engineering
Record number :
1429159
Link To Document :
بازگشت