Title of article :
Water diffusion in polymer nano-films measured with microcantilevers
Author/Authors :
Liu، نويسنده , , Chuanjun and Lopes، نويسنده , , Marcus C. and Pihan، نويسنده , , Sascha A. and Fell، نويسنده , , Daniela and Sokuler، نويسنده , , Mordechai and Butt، نويسنده , , Hans-Jürgen and Auernhammer، نويسنده , , Günter K. and Bonaccurso، نويسنده , , Elmar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
32
To page :
38
Abstract :
We present a method to measure the absorption of water molecules from the liquid and the vapour phase into polymer nano-films and the diffusion inside these films. Film thickness can be down to 45 nm. To demonstrate the possibilities of this method we use polymer films that are deposited on the upper side of a silicon cantilever by plasma polymerization of norbornene. When a microdrop of water is deposited onto the initially straight cantilever, the drop causes the cantilever to bend while it evaporates. Evaporation of such small water drops usually takes less than a second. An upwards bending is due to capillary forces and a downwards bending is due to the diffusion of water into the polymer film – and the consequent volume expansion (swelling) of the film. The magnitude of the capillary forces and the extent of swelling continuously change during drop evaporation. When drop evaporation is over the cantilever returns to its initial straight position. We simulate the time dependent bending with a numerical model that qualitatively agrees with the experiment. From the time dependence of cantilever bending we are able to determine the diffusion coefficient of water in the thin polymer film.
Keywords :
Solid–liquid–vapor interfaces , Surface Tension , diffusion , Thin polymer films , Micromechanical cantilever sensors
Journal title :
Sensors and Actuators B: Chemical
Serial Year :
2011
Journal title :
Sensors and Actuators B: Chemical
Record number :
1440117
Link To Document :
بازگشت