Title of article :
Van Douwen’s diagram for dense sets of rationals
Author/Authors :
Brendle، نويسنده , , Jِrg، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
We investigate cardinal invariants related to the structure Dense ( Q ) / nwd of dense sets of rationals modulo the nowhere dense sets. We prove that s Q ≤ min { s , add ( M ) } , thus dualizing the already known r Q ≥ max { r , cof ( M ) } [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183 (2004) 59–80, Theorem 3.6]. We also show the consistency of each of h Q < s Q and h < h Q . Our results answer four questions of Balcar, Hernández and Hrušák [B. Balcar, F. Hernández-Hernández, M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183 (2004) 59–80, Questions 3.11].
Keywords :
Cardinal invariants of the continuum , Splitting number , van Douwen’s diagram , Dense set , Laver forcing , Distributivity number , Iterated forcing , Meager ideal , Nowhere dense set
Journal title :
Annals of Pure and Applied Logic
Journal title :
Annals of Pure and Applied Logic