Title of article :
On the Turing degrees of minimal index sets
Author/Authors :
Teutsch، نويسنده , , Jason، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
18
From page :
63
To page :
80
Abstract :
We study generalizations of shortest programs as they pertain to Schaefer’s MIN ∗ problem. We identify sets of m -minimal and T -minimal indices and characterize their truth-table and Turing degrees. In particular, we show MIN m ⊕ 0̸ ″ ≡ T 0̸ ‴ , MIN T ( n ) ⊕ 0̸ ( n + 2 ) ≡ T 0̸ ( n + 4 ) , and that there exists a Kolmogorov numbering ψ satisfying both MIN ψ m ≡ tt 0̸ ‴ and MIN ψ T ( n ) ≡ T 0̸ ( n + 4 ) . This Kolmogorov numbering also achieves maximal truth-table degree for other sets of minimal indices. Finally, we show that the set of shortest descriptions, SD , is 2-c.e. but not co-2-c.e. Some open problems are left for the reader.
Keywords :
Truth-table degrees , Minimal indices , Min , Kolmogorov numberings , Turing degrees , Shortest descriptions , Shortest programs , computability theory
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2007
Journal title :
Annals of Pure and Applied Logic
Record number :
1443887
Link To Document :
بازگشت