Title of article :
The strength of sharply bounded induction requires
Author/Authors :
Boughattas، نويسنده , , Sedki and Ko?odziejczyk، نويسنده , , Leszek Aleksander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
504
To page :
510
Abstract :
We show that the arithmetical theory T 2 0 + Σ ˆ 1 b - I N D ∣ x ∣ 5 , formalized in the language of Buss, i.e. with ⌊ x / 2 ⌋ but without the M S P function ⌊ x / 2 y ⌋ , does not prove that every nontrivial divisor of a power of 2 is even. It follows that this theory proves neither N P = c o N P nor S 2 0 .
Keywords :
bounded arithmetic , Very weak arithmetic , Sharply bounded formulas , Unconditional independence results
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2010
Journal title :
Annals of Pure and Applied Logic
Record number :
1444405
Link To Document :
بازگشت