Title of article :
Spaces of orders and their Turing degree spectra
Author/Authors :
Dabkowska، نويسنده , , Malgorzata A. and Dabkowski، نويسنده , , Mieczyslaw K. and Harizanov، نويسنده , , Valentina S. and Togha، نويسنده , , Amir A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
1134
To page :
1143
Abstract :
We investigate computability theoretic and topological properties of spaces of orders on computable orderable groups. A left order on a group G is a linear order of the domain of G , which is left-invariant under the group operation. Right orders and bi-orders are defined similarly. In particular, we study groups for which the spaces of left orders are homeomorphic to the Cantor set, and their Turing degree spectra contain certain upper cones of degrees. Our approach unifies and extends Sikora’s (2004) [28] investigation of orders on groups in topology and Solomon’s (2002) [31] investigation of these orders in computable algebra. Furthermore, we establish that a computable free group F n of rank n > 1 has a bi-order in every Turing degree.
Keywords :
Orderable group , Computable group , Cantor set , Turing degree , free group
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2010
Journal title :
Annals of Pure and Applied Logic
Record number :
1444462
Link To Document :
بازگشت