Title of article :
A regularization method for the approximate particular solution of nonhomogeneous Cauchy problems of elliptic partial differential equations with variable coefficients
Author/Authors :
Li، نويسنده , , Ming and Chen، نويسنده , , Wen and Tsai، نويسنده , , C.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Radial basis functions (RBFs) have proved to be very flexible in representing functions. Based on the idea of the analog equation method and radial basis functions, in this paper, ill-posed Cauchy problems of elliptic partial differential equations (PDEs) with variable coefficients are considered for the first time using the method of approximate particular solutions (MAPS). We show that, using the Tikhonov regularization, the MAPS results an effective and accurate numerical algorithm for elliptic PDEs and irregular solution domains. Comparing the proposed MAPS with Kansaʹs method, numerical results show that the proposed MAPS is effective, accurate and stable to solve the ill-posed Cauchy problems.
Keywords :
Radial basis function , Cauchy problem , Method of approximate particular solutions , regularization
Journal title :
Engineering Analysis with Boundary Elements
Journal title :
Engineering Analysis with Boundary Elements