Title of article :
Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition
Author/Authors :
Chi، نويسنده , , Ronghu and Hou، نويسنده , , Zhongsheng and Xu، نويسنده , , Jianxin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
2207
To page :
2213
Abstract :
In this work we present a discrete-time adaptive iterative learning control (AILC) scheme to deal with systems with time-varying parametric uncertainties. Using the analogy between the discrete-time axis and the iterative learning axis, the new adaptive ILC can incorporate a Recursive Least Squares (RLS) algorithm, hence the learning gain can be tuned iteratively along the learning axis and pointwisely along the time axis. When the initial states are random and the reference trajectory is iteration-varying, the new AILC can achieve the pointwise convergence over a finite time interval asymptotically along the iterative learning axis.
Keywords :
Iterative learning control , Adaptive tuning , Time-varying parameters , Iteration-varying trajectories , Random initial condition
Journal title :
Automatica
Serial Year :
2008
Journal title :
Automatica
Record number :
1447076
Link To Document :
بازگشت