Title of article :
An LFT approach to parameter estimation
Author/Authors :
Hsu، نويسنده , , Kenneth and Vincent، نويسنده , , Tyrone and Wolodkin، نويسنده , , Greg and Rangan، نويسنده , , Sundeep and Poolla، نويسنده , , Kameshwar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
6
From page :
3087
To page :
3092
Abstract :
In this paper we consider a unified framework for parameter estimation problems. Under this framework, the unknown parameters appear in a linear fractional transformation (LFT). A key advantage of the LFT problem formulation is that it allows us to efficiently compute gradients, Hessians, and Gauss–Newton directions for general parameter estimation problems without resorting to inefficient finite-difference approximations. The generality of this approach also allows us to consider issues such as identifiability, persistence of excitation, and convergence for a large class of model structures under a single unified framework.
Keywords :
System identification , Parameter estimation , Linear fractional transformation , Maximum likelihood
Journal title :
Automatica
Serial Year :
2008
Journal title :
Automatica
Record number :
1447458
Link To Document :
بازگشت