Title of article :
Asymptotically optimal orthonormal basis functions for LPV system identification
Author/Authors :
Tَth، نويسنده , , Roland and Heuberger، نويسنده , , Peter S.C. and Van den Hof، نويسنده , , Paul M.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
12
From page :
1359
To page :
1370
Abstract :
A global model structure is developed for parametrization and identification of a general class of Linear Parameter-Varying (LPV) systems. By using a fixed orthonormal basis function (OBF) structure, a linearly parametrized model structure follows for which the coefficients are dependent on a scheduling signal. An optimal set of OBFs for this model structure is selected on the basis of local linear dynamic properties of the LPV system (system poles) that occur for different constant scheduling signals. The selected OBF set guarantees in an asymptotic sense the least worst-case modeling error for any local model of the LPV system. Through the fusion of the Kolmogorov n -width theory and Fuzzy c-Means clustering, an approach is developed to solve the OBF-selection problem for discrete-time LPV systems, based on the clustering of observed sample system poles.
Keywords :
Pole clustering , Orthonormal basis functions , Linear parameter-varying systems , System identification
Journal title :
Automatica
Serial Year :
2009
Journal title :
Automatica
Record number :
1447670
Link To Document :
بازگشت