Title of article :
Bayesian system identification via Markov chain Monte Carlo techniques
Author/Authors :
Ninness، نويسنده , , Brett and Henriksen، نويسنده , , Soren، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
40
To page :
51
Abstract :
The work here explores new numerical methods for supporting a Bayesian approach to parameter estimation of dynamic systems. This is primarily motivated by the goal of providing accurate quantification of estimation error that is valid for arbitrary, and hence even very short length data records. The main innovation is the employment of the Metropolis–Hastings algorithm to construct an ergodic Markov chain with invariant density equal to the required posterior density. Monte Carlo analysis of samples from this chain then provides a means for efficiently and accurately computing posteriors for model parameters and arbitrary functions of them.
Keywords :
Maximum likelihood , Parameter estimation , Bayesian methods , System identification
Journal title :
Automatica
Serial Year :
2010
Journal title :
Automatica
Record number :
1447909
Link To Document :
بازگشت