Title of article :
Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables and output error identification
Author/Authors :
Sِderstrِm، نويسنده , , Torsten and Hong، نويسنده , , Mei and Schoukens، نويسنده , , Johan and Pintelon، نويسنده , , Rik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
721
To page :
727
Abstract :
For identifying errors-in-variables models, the time domain maximum likelihood (TML) method and the sample maximum likelihood (SML) method are two approaches. Both methods give optimal estimation accuracy but under different assumptions. In the TML method, an important assumption is that the noise-free input signal is modelled as a stationary process with rational spectrum. For SML, the noise-free input needs to be periodic. It is interesting to know which of these assumptions contain more information to boost the estimation performance. In this paper, the estimation accuracy of the two methods is analyzed statistically for both errors-in-variables (EIV) and output error models (OEM). Numerical comparisons between these two estimates are also done under different signal-to-noise ratios (SNRs). The results suggest that TML and SML have similar estimation accuracy at moderate or high SNR for EIV. For OEM identification, these two methods have the same accuracy at any SNR.
Keywords :
Errors-in-variables , System identification , Joint output method , Periodic data , Maximum likelihood
Journal title :
Automatica
Serial Year :
2010
Journal title :
Automatica
Record number :
1448003
Link To Document :
بازگشت