Title of article :
Parameter estimation with scarce measurements
Author/Authors :
Ding، نويسنده , , Feng and Liu، نويسنده , , Guangjun and Liu، نويسنده , , Xiaoping P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
1646
To page :
1655
Abstract :
In this paper, the problems of parameter estimation are addressed for systems with scarce measurements. A gradient-based algorithm is derived to estimate the parameters of the input–output representation with scarce measurements, and the convergence properties of the parameter estimation and unavailable output estimation are established using the Kronecker lemma and the deterministic version of the martingale convergence theorem. Finally, an example is provided to demonstrate the effectiveness of the proposed algorithm.
Keywords :
Stochastic gradient , Missing data , Recursive identification , Multi-innovation identification , Parameter estimation
Journal title :
Automatica
Serial Year :
2011
Journal title :
Automatica
Record number :
1448399
Link To Document :
بازگشت