Title of article :
Parameter estimation with scarce measurements
Author/Authors :
Ding، نويسنده , , Feng and Liu، نويسنده , , Guangjun and Liu، نويسنده , , Xiaoping P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, the problems of parameter estimation are addressed for systems with scarce measurements. A gradient-based algorithm is derived to estimate the parameters of the input–output representation with scarce measurements, and the convergence properties of the parameter estimation and unavailable output estimation are established using the Kronecker lemma and the deterministic version of the martingale convergence theorem. Finally, an example is provided to demonstrate the effectiveness of the proposed algorithm.
Keywords :
Stochastic gradient , Missing data , Recursive identification , Multi-innovation identification , Parameter estimation
Journal title :
Automatica
Journal title :
Automatica